

Volume Rendering Techniques at Imageworks

Christopher Kulla
SIGGRAPH 2017

VANCOUVER, BC | CULVER CITY, CA 1

Thank you for the introduction.

My name is Chris Kulla and I am going to be talking about how
Volume Rendering works in our renderer at Sony Imageworks.

Outline

System level overview of volume rendering in our renderer:

• Medium Tracking
• Ray Marching
• Importance Sampling

VANCOUVER, BC | CULVER CITY, CA 2

We’ve heard a lot about the theory of volume rendering so far,
but I want to give more of a systems level overview of how
volume rendering is implemented in our renderer.

Before I begin, I do want to clarify that while our renderer does
share a common ancestry with the Arnold renderer from Solid
Angle - I am going to be talking about our version of it which
has diverged for quite some time now. I’m actually going to be
talking more about this divergence on Wednesday afternoon in
the Production Path Tracing course.

For today we’re going to focus on volumes, specifically these
three areas:

Medium Tracking, Ray Marching, And Importance Sampling

Medium Tracking
(Finding relevant volumes along each ray)

VANCOUVER, BC | CULVER CITY, CA 3

The first topic is medium tracking. Now I apologize for the
overloaded meaning of the word tracking here. When I say
tracking I mean “keeping track of”. That is, how do we discover
which volumes are relevant along each ray.

Medium Tracking

Our renderer distinguishes two cases:

• Volumes Primitives (IOR = 1, no boundary)
• Overlap is additive, all mediums are summed
• Need list of overlapping intervals along the ray

• Surface Defined Volumes (IOR ≥ 1, with boundary)
• Overlap is exclusive, one medium “wins”
• Priority defined by the artist
• Each surface hit must know medium on either side

We have different tracking techniques for each case.

VANCOUVER, BC | CULVER CITY, CA 4

Our renderer actually distinguishes between two cases that
serve different use cases.

First we have volume primitives, which don’t have any
boundary. For these the overlap rules are additive: meaning
all the properties have to be summed. To do this - we keep
track of a list of overlapping intervals along the ray.

Second, we have surface defined volumes. These are actually
defined through surface shading, in other words we hit the
boundary and the surface shader will tell us if there is a
medium inside the shape or not. Here the overlap rules are
exclusive and driven by a priority system.

So let me go through the implementation of each case.

Medium Tracking - Volume Primitives

Surface primitives return hit points

(keep nearest)

struct surfhit { float t; int primID; }

VANCOUVER, BC | CULVER CITY, CA 5

A raytracer represents surface hits by measuring the distance
along a ray to a particular point. This is usually represented as
a single value t and some identifier of the primitive we hit.

Medium Tracking - Volume Primitives

Surface primitives return hit points (keep nearest)

struct surfhit { float t; int primID; }

VANCOUVER, BC | CULVER CITY, CA 5

Because the ray tracer usually only cares about the nearest
primitive, that’s all it needs. Any hit that’s closer than the one
found so far updates the hit, otherwise its discarded.

Medium Tracking - Volume Primitives

Volume hits return intervals

(keep all)

struct volhit { float t0, t1; int primID;

volhit* next;

}

VANCOUVER, BC | CULVER CITY, CA 5

So for volume primitives in our renderer we actually return
something different which is intervals instead of hit points.

That means they define a start and end along the ray.

Medium Tracking - Volume Primitives

Volume hits return intervals (keep all)

struct volhit { float t0, t1; int primID; volhit* next; }

VANCOUVER, BC | CULVER CITY, CA 5

And because volumes have transmission, we actually keep all
the intervals we find. We store this as a linked list, which is
usually a terrible data structure but in this context, the list is
really short lived and the memory comes from a memory pool
so it stays very cache friendly.

Medium Tracking - Volume Primitives

Volume hits return intervals (keep all unoccluded)

struct volhit { float t0, t1; int primID; volhit* next; }

VANCOUVER, BC | CULVER CITY, CA 5

Of course, if we do hit a surface we can discard any volume
intervals that lie beyond that point.

In our implementation this happens after we return from the
ray tracing call so we just need to do a single pruning pass.

Medium Tracking - Volume Primitives

Convex shapes are easy as the regular
intersection routines already produce a
front and back hit.

VANCOUVER, BC | CULVER CITY, CA 6

Here are some examples of the various volume primitives we
support:

Convex shapes are the easiest to implement because the
intersection test already returns a front and back hit point. So
we just make an interval instead of treating them as two
potential surface hits.

Medium Tracking - Volume Primitives

Convex shapes are easy as the regular
intersection routines already produce a
front and back hit.

VANCOUVER, BC | CULVER CITY, CA 6

Here’s a sphere.

Medium Tracking - Volume Primitives

Mesh defined volumes require counting
intersections (even or odd).

Bounding box limits ambiguous cases.

Each ray figures out overlap from
scratch, no history required!

VANCOUVER, BC | CULVER CITY, CA 6

Meshes are a bit more complicated. In order to turn surface
hits into intervals, we actually need to count intersections.
Depending upon if we hit an even or odd number, we can
decide how to pair up those hits and turn them into intervals.

As you can imagine, there are some ambiguous cases like if
you only found a single intersection but started outside the
shape. So we always use the objects bounding box as a kind of
sanity check.

The nice thing about this approach is that the overlap between
the ray and volume is figured out from scratch without any
kind of history required. On the other hand, its a bit more
expensive because each ray needs to trace all the way through
the mesh each time.

Medium Tracking - Volume Primitives

Sparse grids use a two level structure
to minimize marching through empty
space.

Dense grids can be made sparse on load.

VANCOUVER, BC | CULVER CITY, CA 6

The next and actually most common volume primitive is the
sparse grid. This is what we use to render voxel data, usually
from fluid simulations.

We take advantage of the sparse structure of most volumes
and organize the data into two levels, blocks and voxels. Even
if the input data is dense for some reason, we convert it to be
sparse as we load the data.

Medium Tracking - Volume Primitives

Sparse grids use a two level structure
to minimize marching through empty
space.

Dense grids can be made sparse on load.

VANCOUVER, BC | CULVER CITY, CA 6

Here is what the block structure of that fluid simulation looks
like. This is what gets intersected for finding overlap. The
regular 3D grid traversal algorithm already provides the hits in
order, we just turn them into intervals as we go.

We also make sure to merge the intervals as we go, so if you go
through several blocks at once we still just end up with a
single interval.

Medium Tracking - Surface Defined Volumes

• Surfaces can define an interior medium
• Artists describe intent through priorities
• Also defines IOR at boundaries

• Critical for correct rendering of liquids
• Liquid is modeled slightly overlapping glass

VANCOUVER, BC | CULVER CITY, CA 7

That was volume primitives, now lets talk about surface
defined volumes.

This is the case where the surface shader is the one
responsible for deciding what the medium properties are.

From the point of view of the artist, everything is contained in
the surface shader. In this picture I just have a glass shader
and a liquid shader.

When the two meshes overlap each other, we rely on the artist
to define which takes takes precedence by giving each a
priority.

Medium Tracking - Surface Defined Volumes

• Surfaces can define an interior medium
• Artists describe intent through priorities
• Also defines IOR at boundaries
• Critical for correct rendering of liquids

• Liquid is modeled slightly overlapping glass

VANCOUVER, BC | CULVER CITY, CA 7

This is really critical for rendering liquids correctly. Here I’ve
shown how things look if you just model the liquid as slightly
smaller than the glass. All kinds of extra reflections and
refractions happens in that small air gap.

Medium Tracking - Surface Defined Volumes

• Surfaces can define an interior medium
• Artists describe intent through priorities
• Also defines IOR at boundaries
• Critical for correct rendering of liquids
• Liquid is modeled slightly overlapping glass

VANCOUVER, BC | CULVER CITY, CA 7

By modeling the liquid slightly overlapping the glass, we get
the right picture because we get a clean transition from one
medium directly to the next and also because we can get the
right ratio of refractive indices.

Medium Tracking - Surface Defined Volumes

“Simple Nested Dielectrics in Ray Traced Images”
Schmidt and Budge, JGT 2002

• Each ray maintains a stack of mediums it has entered
• At each interface, decide which medium “wins”
• Some hits will be discarded (but still update the stack)

VANCOUVER, BC | CULVER CITY, CA 8

Our implementation pretty much follows the only paper I know
of on this topic. It was published in 2002 by Charles Schmidt
and Brian Budge.

The basic idea is that each ray maintains the stack of all
mediums its entered so far.

At each interface there are rules to decide which medium
“wins” (based on their priority). This is what decides if the
surface hit is actually accepted or not.

But either way, the stack is still updated so we remember that
we’ve entered or left the given medium.

Medium Tracking - Surface Defined Volumes

“Simple Nested Dielectrics in Ray Traced Images”
Schmidt and Budge, JGT 2002

• Each ray maintains a stack of mediums it has entered
• At each interface, decide which medium “wins”
• Some hits will be discarded (but still update the stack)

← ModelGlass
Liquid

VANCOUVER, BC | CULVER CITY, CA 8

Here is a cross section view of how we might model the
example from before.

There are just two meshes here, each with just a surface
shader. The important thing is how the liquid is modeled to
slightly intersect the glass.

Medium Tracking - Surface Defined Volumes

“Simple Nested Dielectrics in Ray Traced Images”
Schmidt and Budge, JGT 2002

• Each ray maintains a stack of mediums it has entered
• At each interface, decide which medium “wins”
• Some hits will be discarded (but still update the stack)

← Model

Render →

Glass
Liquid

Air/Glass
Air/Liquid
Glass/Liquid
Glass
Liquid

VANCOUVER, BC | CULVER CITY, CA 8

What this turns into during the render is more like this.
Because the glass has higher priority than the liquid, it “wins”
where they overlap.

Also because we maintain that stack, when we leave the glass
and travel into the liquid, we already have the liquid in our
stack.

That tells us we are making a transition from glass to liquid
and therefore we can calculate the right IOR for that boundary
without having had to model it separately.

As far as the artist is concerned, all they had to do was define
the IORs relative to vacuum - which is how they are used to
thinking about those numbers.

Medium Tracking - Surface Defined Volumes

Some details not described in paper:

• Handling of shadow rays
• Rules for equal priorities
• Establishing starting medium

VANCOUVER, BC | CULVER CITY, CA 9

When implementing all this we ran into a few questions that
weren’t really covered in the paper. So I’d like to discuss those
now.

Medium Tracking - Shadow Rays

Needed for approximate caustics or embedded lights:

• Ray tracer discovers hits in unsorted order

• Defer any hits of priority ̸= Off
• Resolve intervals once all hits are known (if not otherwise shadowed)
• Good performance depends on using priorities sparingly

VANCOUVER, BC | CULVER CITY, CA 10

The first is what to do on shadow rays. Now in reality, shadow
rays shouldn’t be able to go through refractive interfaces – but
in production rendering we sometimes allow this because its a
much cheaper way to approximate caustics.

It also comes up when lights are embedded inside mediums.

The ray tracer discovers shadow hits in unsorted order…

Medium Tracking - Shadow Rays

Needed for approximate caustics or embedded lights:

• Ray tracer discovers hits in unsorted order
• Defer any hits of priority ̸= Off

• Resolve intervals once all hits are known (if not otherwise shadowed)
• Good performance depends on using priorities sparingly

VANCOUVER, BC | CULVER CITY, CA 10

…so we actually need to defer the processing for all the hits
that have a non-default priority.

Medium Tracking - Shadow Rays

Needed for approximate caustics or embedded lights:

• Ray tracer discovers hits in unsorted order
• Defer any hits of priority ̸= Off
• Resolve intervals once all hits are known (if not otherwise shadowed)

• Good performance depends on using priorities sparingly

VANCOUVER, BC | CULVER CITY, CA 10

So we maintain a list of all the hits we get and then we sort
them into intervals once we know all of them.

Of course that sorting step is only needed if we didn’t already
get shadowed by some opaque object.

Medium Tracking - Shadow Rays

Needed for approximate caustics or embedded lights:

• Ray tracer discovers hits in unsorted order
• Defer any hits of priority ̸= Off
• Resolve intervals once all hits are known (if not otherwise shadowed)
• Good performance depends on using priorities sparingly

VANCOUVER, BC | CULVER CITY, CA 10

This probably sounds a bit expensive - and it definitely can be.
So we make sure we just use priorities only when we really
need to.

And that’s really only when shapes need to overlap for some
reason, which is normally a small fraction of what is in the
scene.

Its also worth mentioning that the expense only applies to
rays that hit these objects. There’s no cost if you don’t get near
these objects.

Medium Tracking - Different Priorities

Left > Right

• Red cube has higher priority
• Red cube visible inside green cube
• Green cube invisible inside red cube

VANCOUVER, BC | CULVER CITY, CA 11

So here we have the priority system in action:

I have two partially overlapping cubes. The shader is just
setting plain absorption with no scattering so we can see
what’s going on inside.

When the red cube has higher priority, the green cube isn’t
visible through it.

Medium Tracking - Different Priorities

Left < Right

• Green cube has higher priority
• Green cube visible inside red cube
• Red cube invisible inside green cube

VANCOUVER, BC | CULVER CITY, CA 11

And when the green cube has higher priority, the red cube
disappears inside of it.

So as you write the code, you then have to decide - how
should we handle the case where both priorities are equal?
The paper didn’t really mention this.

Medium Tracking - Equal Priorities

Left = Right

• All interior hits are ignored!
• Allows merging objects at render time
• Leaving a medium maintains current
properties if next object on stack is of
equal priority

• Priority=Off objects are always visible

VANCOUVER, BC | CULVER CITY, CA 12

We decided it would be most helpful if equal priority mediums
actually “merge”. That means all of the internal hits disappear.

This actually ended up being really handy for getting rid of
internal geometry.

Its worth pointing out that when we leave an object, if the next
one on the stack has the same priority - we actually keep the
medium properties from the object we are leaving.

So in this example - leaving the red cube while you are still
inside the green cube keeps the ray tagged with the red
medium properties. That’s important because otherwise you
could see a discontinuity there.

Medium Tracking - Equal Priorities

Left = Right = Off

• All interior hits are ignored!
• Allows merging objects at render time
• Leaving a medium maintains current
properties if next object on stack is of
equal priority

• Priority=Off objects are always visible

VANCOUVER, BC | CULVER CITY, CA 12

Its also worth mentioning that when we reach our highest
possible priority the internal hits are visible no matter what.

This is important because it keeps that case fast but also
because it makes the rules simpler for the artists. Priority Off
means the object will be visible no matter what.

Medium Tracking - Priorities

Priorities are stored as integers (smaller means higher priority).

To avoid confusion, we hide the integers from artists and present a
drop-down menu:

• Off (0)
• Very High (50)
• High (100)

• Normal (200)
• Low (300)
• Very Low (400)

Left gaps in numbering for special cases (none encountered so far).

VANCOUVER, BC | CULVER CITY, CA 13

Just like in the paper - we decided to internally store priorities
as integers, where smaller means higher priority. That
convention is nice because it makes 0 be the default.

But in conversation with artists this was always very confusing.
So we decided to make our UI show just a few hardcoded
levels with names instead of numbers.

You’ll notice that we left ourselves some gaps in how we
numbered these, because we were worried we would run into
corner cases where we had to slot an object between two
already decided priority levels – but this hasn’t happened so
far.

Medium Tracking - Initialization

Rays that start in a vacuum behave correctly

VANCOUVER, BC | CULVER CITY, CA 14

The last implementation detail to discuss is how we actually
decide the starting state of the ray stack.

When the camera starts in empty space, everything is fine. An
empty stack is the correct start state.

Medium Tracking - Initialization

Rays that start inside a medium need to know the starting stack

VANCOUVER, BC | CULVER CITY, CA 14

But if the camera start inside a medium (underwater in this
case) we need to have some way to specify the starting stack.

Notice how this first ray here doesn’t even intersect the surface
of the water all. Even if we made sure to add sides to close the
water volume - we might hit some other objects first.

Medium Tracking - Initialization

We fire a probe ray vertically to find all containing surfaces

VANCOUVER, BC | CULVER CITY, CA 14

Our solution is to fire a single probe ray at the start of the
render, going all the way through all surfaces.

Why did we pick up? Well its mostly motivated this water case,
which is probably the only case where this is needed. Ocean
surfaces are typically modeled as displaced planes…

Medium Tracking - Initialization

Water surface doesn’t need to be closed!

VANCOUVER, BC | CULVER CITY, CA 14

…and it was helpeful to our artists not to have to worry about
somehow closing off the surface with fake walls.

Medium Tracking - Initialization

High priority empty medium can act as clipping plane

VANCOUVER, BC | CULVER CITY, CA 14

Another case we ran into was what to do when the camera is
hovering near the surface and wants to see above and below
the water at the same time.

We happen to be working on a shark movie at the moment, so
this case really did come up in production - even though I
can’t show any renders of it today.

We use a high priority box that acts like a clipping plane. This
makes sure we can cross the water to find its medium without
actually registering a hit right away. This means we can see
both above and below the water in the same frame. And the
artist never has to worry about manually tagging anything.

Medium Tracking - Initialization

Camera rays can see above and below water in the same image

VANCOUVER, BC | CULVER CITY, CA 14

Medium Tracking

Camera outside

VANCOUVER, BC | CULVER CITY, CA 15

Like I said I can’t show the images from the real production
shots this came up on because the movie is not out yet. So
we’ll have to make do with a Cornell box.

Medium Tracking

Camera outside, see below the water

VANCOUVER, BC | CULVER CITY, CA 15

Here the camera is outside the water, but we use a high
priority box around it to be able to see underwater

Medium Tracking

Camera inside, see above water

VANCOUVER, BC | CULVER CITY, CA 15

Now the camera starts inside the water, but we can still see
above the water

Medium Tracking

Camera inside

VANCOUVER, BC | CULVER CITY, CA 15

And now the camera is fully inside. Again, this plane is
animating up - but I didn’t ever have to manually tell the
camera it was inside any particular medium – the renderer
figures it out automatically.

Medium Tracking - Summary

Two ways of representing volumes:

• Volume Primitives (Additive overlap)
• Clouds, Smoke, Fire

• Surface Defined Volumes (Exclusive overlap)
• Glass, Liquids, Subsurface

Both methods co-exist. Volume primitives combine additively with the
surface defined medium decided by the current stack (e.g.: under-water
explosions).

VANCOUVER, BC | CULVER CITY, CA 16

That pretty much covers the topic of medium tracking. Just to
summarize, our renderer has two kinds of volumes:

Volume primitives like clouds, smoke or fire that combine
additively

And surface defined volumes that have exclusive overlap. We
use those for things like glass, liquids or subsurface.

Of course both of these methods coexist. So going back to the
underwater example, any explosion that happens underwater
will properly combine additively with the ambient water
medium.

Ray Marching
(Capturing volume properties along each ray)

VANCOUVER, BC | CULVER CITY, CA 17

Now lets move out to ray marching. All I just described was
how to find where the volume are along the ray. Now we need
to actually execute the volume shaders.

Ray Marching

Each segment captured by medium tracking defines:

• Interval: [tstart, tend]

• Shader to execute (Volume primitives)
• Constant properties (Surface defined volumes)
• Step size

All segments are split into non-overlapping intervals and sorted. Where
volumes overlap, a single segment can refer to multiple primitives.

VANCOUVER, BC | CULVER CITY, CA 18

Medium tracking provides a list of segments, where each one
defines:

Start and end intervals

Either a shader to execute if the segment was from a volume
primitive or a set of medium properties if we came from a
surface defined volume.

And lastly a step size that tells us how many times we need to
run the shader if we have one. For example the sparse grid
primitive defaults this to about 1 step per voxel.

We also have to split the segments into disjoint spans, where
each span has the list of all the primitives it covers.

Ray Marching

Medium tracking identifies intervals

VANCOUVER, BC | CULVER CITY, CA 19

Here is just a visual of what I just said. We start with some
intervals given to us by the medium tracking phase.

Ray Marching

Split ray into homogeneous segments

VANCOUVER, BC | CULVER CITY, CA 19

We break those intervals into segments that we assume to be
homogeneous by the step size.

Ray Marching

Run shader once per segment (front to back)

VANCOUVER, BC | CULVER CITY, CA 19

And then start executing shaders from front to back

Ray Marching

Store σsi ,σti ,Ti = Ti−1e
−σti−1∆i−1 and phase function

Ti enables piecewise exponential reconstruction of transmittance

VANCOUVER, BC | CULVER CITY, CA 19

At every step, we store the medium properties and estimate
the transmittance so far.

This discretized transmittance together with the extinction
inside that step means we can reconstruct a piecewise
exponential representation of the transmittance along the ray.

Ray Marching

Given any t, locate segment by binary search

t

VANCOUVER, BC | CULVER CITY, CA 19

This means that given any distance t along the ray, we can
quickly locate it by binary search

Ray Marching

Can calculate lighting at any point (using any pdf)

t

VANCOUVER, BC | CULVER CITY, CA 19

And then we have all the information we need to compute the
lighting integral.

Ray Marching

Can calculate lighting at any point (using any pdf)

t

VANCOUVER, BC | CULVER CITY, CA 19

We are free to choose those distances however we like - and I
will talk about that in a minute.

Ray Marching Bias

Step Size = 1 Voxel

Ray marching underestimates transmittance
when step size is too large (bias).

Slight change in density is not always
objectionable!

Step size trades accuracy for speed.

Unbiased methods trade speed for extra
noise (beneficial for higher order scattering)

VANCOUVER, BC | CULVER CITY, CA 20

I just want to briefly discuss the bias that comes from doing
ray marching this way. When we execute a shader over a small
step, we are making the incorrect assumption that the volume
in homogeneous in that step.

When the step size is too large, we are actually going to
underestimate transmittance. This is of course a form of bias,
which is something we’ve been trying to move away from in
the shift to path tracing techniques.

But the visual error you get here is a bit different from other
forms of bias in rendering.

Ray Marching Bias

Step Size = 2 Voxels

Ray marching underestimates transmittance
when step size is too large (bias).

Slight change in density is not always
objectionable!

Step size trades accuracy for speed.

Unbiased methods trade speed for extra
noise (beneficial for higher order scattering)

VANCOUVER, BC | CULVER CITY, CA 20

Here I am increasing the step size by multiples of the voxel size

Ray Marching Bias

Step Size = 4 Voxels

Ray marching underestimates transmittance
when step size is too large (bias).

Slight change in density is not always
objectionable!

Step size trades accuracy for speed.

Unbiased methods trade speed for extra
noise (beneficial for higher order scattering)

VANCOUVER, BC | CULVER CITY, CA 20

But here even at 4 voxels per step, we still don’t really see any
significant change – even though the render was 4 times faster.

Its worth pointing out that the error only manifests itself
where the assumption that the medium is not homogeneous
over the step is not true.

Anywhere that the volume is homogeneous, ray marching with
a large step is fine. In fact we take advantage of this if we
detect for example that a particular block of voxels all have
the same value.

Ray Marching Bias

Step Size = 8 Voxels

Ray marching underestimates transmittance
when step size is too large (bias).

Slight change in density is not always
objectionable!

Step size trades accuracy for speed.

Unbiased methods trade speed for extra
noise (beneficial for higher order scattering)

VANCOUVER, BC | CULVER CITY, CA 20

Once we go too far, we can start to see visible differences to
the reference – but the picture is still plausible. In other
words, we are exchanging speed for a less accuracy but we
don’t get any extra noise.

Ray Marching Bias

Step Size = 16 Voxels

Ray marching underestimates transmittance
when step size is too large (bias).

Slight change in density is not always
objectionable!

Step size trades accuracy for speed.

Unbiased methods trade speed for extra
noise (beneficial for higher order scattering)

VANCOUVER, BC | CULVER CITY, CA 20

I’ll keep going…

Ray Marching Bias

Step Size = 32 Voxels

Ray marching underestimates transmittance
when step size is too large (bias).

Slight change in density is not always
objectionable!

Step size trades accuracy for speed.

Unbiased methods trade speed for extra
noise (beneficial for higher order scattering)

VANCOUVER, BC | CULVER CITY, CA 20

Now the renders are starting to look different than our
reference, but are still nice to look at. Which brings me to the
second point, that the bias you get here is not necessarily
objectionable. The artist might be ok with trading a slight loss
in density in exchange for a faster render.

Sometimes you can nudge the volume parameters to make up
for this a little bit - but not always of course.

Ray Marching Bias

Step Size = 64 Voxels

Ray marching underestimates transmittance
when step size is too large (bias).

Slight change in density is not always
objectionable!

Step size trades accuracy for speed.

Unbiased methods trade speed for extra
noise (beneficial for higher order scattering)

VANCOUVER, BC | CULVER CITY, CA 20

Now in contrast, the unbiased methods of ray marching that
you heard about earlier always give the correct image but you
can only trade performance for extra noise.

So far we’ve been happy with the behavior of this biased ray
marching approach and the bias hasn’t been too much of an
issue…

…but it would be nice to do a more detailed analysis of the
bias/variance trade-offs between this approach and the
unbiased estimators we heard about earlier.

Decoupled Ray Marching

A few more things happen during the ray marching stage:

• Surface shaders are run (for all transparent hits)
• Emission is summed up
• Alpha and holdouts are computed

No lighting calculations have been performed yet!

We call this process decoupled ray marching.

VANCOUVER, BC | CULVER CITY, CA 21

A few other things happen during this ray marching phase:

We also run all the surface shaders, potentially going through
any transparent hits. This means we can do the volume light
sampling just once, even if there were discrete opacity
changes like from hair for example. This really helps when you
have fur embedded inside a volume.

We also add up any emission (for cases like fire), and we
calculate any alpha and any holdouts if this is a camera ray.

But just to be clear, we still haven’t done any lighting
calculations. We’re just gathering information about what to
do in the next phase. That’s why we call this decoupled ray
marching because the ray marching is decoupled from the
lighting calculations.

Holdouts

Important for isolating volumes in
compositing.

Holdouts defined by σh (same units as σa)

Holdout through step i is:

bgvis += Ti
σhi
σti

(
1− e−σti∆i

)

VANCOUVER, BC | CULVER CITY, CA 22

Since I mentioned holdouts, I just want to explain how this is
tracked, since its an important production feature.

First, we keep track of the holdout amount using the same
units as extinction - inverse length. That’s because we need
overlapping volumes to compose correctly, even if only of
them is flagged to be held out.

At every step, we compute the holdout amount with the
formula you see here.

This computes what we call “background visibility”. This makes
all the math additive which simplifies the formulas. Alpha is
computed at the end as just one minus that value. This
representation is also convenient in the surface case.
Anywhere we would like alpha to be 0 we just accumulate
background visibility of 1 based on the current ray weight.

Decoupled Ray Marching

From this discretized representation of volumes (and surfaces) along the
ray, we now need to decide:

• Where to sample direct lighting?
• Where to sample indirect lighting?

VANCOUVER, BC | CULVER CITY, CA 23

So now that we have all this information about what
happening along the ray, we just need to decide where to
sample direct lighting and how to extend the path for indirect
lighting.

Importance Sampling for Single Scattering

VANCOUVER, BC | CULVER CITY, CA 24

Which brings me to the last phase - importance sampling.

I’m going to discuss direct lighting or single scattering first.

L(x, #”w) =

∫ b

a
e−

∫ t
0 σt(xs) ds

(
Le

(
xt, #”w

)
+ σs (xt)

∫
S2
ρ(#”w,

#”v)L(xt, #”v) d #”v
)

dt

Homogeneous media ▼

L(x, #”w) =

∫ b

a
e−σtt

(
σs

∫
S2
ρ(#”w,

#”v)L(xt, #”v) d #”v
)

dt

Point light ▼

L(x, #”w) = σs

∫ b

a
e−σttρ(#”w,

”xtc)L(xt, # ”xtc) dt

VANCOUVER, BC | CULVER CITY, CA 25

In order to tackle the easiest problem first, we’re going to
simplify the full volume rendering equation down to just
homogeneous mediums and point lights. This allows us to
collapse most of the integrals and just focus on one.

Single Scattering Equation for Point Light

Integrate point light contribution along the ray

a b

L(x, #”w) = σs

∫ b

a

e−σt(t+∆)e−σt
√
D2+t2ρ(

#”w,
”xtc)V(xt, c) Φ

D2+t2

dt

VANCOUVER, BC | CULVER CITY, CA 26

I am just going to quickly run through the terms in this
equation so we see what each one does.

Single Scattering Equation for Point Light

a b

Radiance reaching the ray varies as 1/r2

xt

L(x, #”w) = σs

∫ b

a

e−σt(t+∆)e−σt
√
D2+t2ρ(

#”w,
”xtc)V(xt, c)

Φ
∥xt−c∥2 dt

VANCOUVER, BC | CULVER CITY, CA 26

The radiance reaching the ray varies as 1/r2.

Single Scattering Equation for Point Light

a b
xt

Express in terms of t

D

t

L(x, #”w) = σs

∫ b

a

e−σt(t+∆)e−σt
√
D2+t2ρ(

#”w,
”xtc)V(xt, c)

Φ
D2+t2 dt

VANCOUVER, BC | CULVER CITY, CA 26

We can express that in terms of the distance t along the ray
and the distance D between the ray and the light.

Single Scattering Equation for Point Light

a b
xt

D

t

Account for extinction up to sample point

∆

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)

e−σt
√
D2+t2ρ(

#”w,
”xtc)V(xt, c)

Φ
D2+t2 dt

VANCOUVER, BC | CULVER CITY, CA 26

Now we add extinction along the viewing ray. The ∆ here is
because I’ve shifted to origin to be under the light.…

Single Scattering Equation for Point Light

a b
xt

D

t

Add extinction towards the light

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2

ρ(
#”w,

”xtc)V(xt, c)

Φ
D2+t2 dt

VANCOUVER, BC | CULVER CITY, CA 26

…and now extinction along the shadow ray

Single Scattering Equation for Point Light

a b
xt

D

t

Finally add phase function and visibility

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ(

#”w,
”xtc)V(xt, c) Φ

D2+t2 dt

VANCOUVER, BC | CULVER CITY, CA 26

And then the rest is just the phase function and visibility.

Single Scattering Equation for Point Light

a b

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ(

#”w,
”xtc)V(xt, c) Φ

D2+t2 dt

What is the best sample distribution for Monte Carlo integration?

VANCOUVER, BC | CULVER CITY, CA 26

So the question is - how should we distribute samples for
Monte Carlo integration?

Importance sampling for point lights

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ

(
#”w,

#”vt
)
V (c, xt)

Φ

D2 + t2 dt

Only two terms can be easily integrated and inverted

Transmission e−σtt Geometric term 1
D2+t2

VANCOUVER, BC | CULVER CITY, CA 27

There are really only two terms in this expression that can be
importance sampled easily.

Importance sampling for point lights

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ

(
#”w,

#”vt
)
V (c, xt)

Φ

D2 + t2 dt

Only two terms can be easily integrated and inverted
Transmission e−σtt

a b

Geometric term 1
D2+t2

VANCOUVER, BC | CULVER CITY, CA 27

First is the transmission, which was discussed earlier.

Importance sampling for point lights

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ

(
#”w,

#”vt
)
V (c, xt)

Φ

D2 + t2 dt

Only two terms can be easily integrated and inverted
Transmission e−σtt

a b

Geometric term 1
D2+t2

VANCOUVER, BC | CULVER CITY, CA 27

Notice that this function is really slowly varying and always
between 0 and 1.

Importance sampling for point lights

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ

(
#”w,

#”vt
)
V (c, xt)

Φ

D2 + t2 dt

Only two terms can be easily integrated and inverted
Transmission e−σtt

a b

Geometric term 1
D2+t2

VANCOUVER, BC | CULVER CITY, CA 27

Sampling according to this will tend to place samples close to
the ray origin

Importance sampling for point lights

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ

(
#”w,

#”vt
)
V (c, xt)

Φ

D2 + t2 dt

Only two terms can be easily integrated and inverted
Transmission e−σtt

a b

Geometric term 1
D2+t2

a b

VANCOUVER, BC | CULVER CITY, CA 27

Second is the geometric term.

Importance sampling for point lights

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ

(
#”w,

#”vt
)
V (c, xt)

Φ

D2 + t2 dt

Only two terms can be easily integrated and inverted
Transmission e−σtt

a b

Geometric term 1
D2+t2

a b

VANCOUVER, BC | CULVER CITY, CA 27

This one actually has a large spike that can get arbitrarily large
as we get closer to the light source.

Importance sampling for point lights

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ

(
#”w,

#”vt
)
V (c, xt)

Φ

D2 + t2 dt

Only two terms can be easily integrated and inverted
Transmission e−σtt

a b

Geometric term 1
D2+t2

a b

VANCOUVER, BC | CULVER CITY, CA 27

This one actually has a large spike that can get arbitrarily large
as we get closer to the light source.

Importance sampling for point lights

L(x, #”w) = σs

∫ b

a
e−σt(t+∆)e−σt

√
D2+t2ρ

(
#”w,

#”vt
)
V (c, xt)

Φ

D2 + t2 dt

Only two terms can be easily integrated and inverted
Transmission e−σtt

a b

Geometric term 1
D2+t2

a b

VANCOUVER, BC | CULVER CITY, CA 27

So placing samples here will be much more effective at
reducing variance because the overall product is going to be
most strongly influenced by this term.

I do need to mention the “Joint Importance Sampling” paper
from Siggraph Asia, 2013 that introduced additional estimators
that also include the phase function. The only problem is they
are a bit hard to implement in our renderer because we allow
the phase function to change along the ray. But the paper
itself is definitely still worth checking out.

Importance sampling for point lights

a b

D

Goal is to get a pdf proportional to geometric term:

pdf(t) ∝ 1
D2+t2

VANCOUVER, BC | CULVER CITY, CA 28

You might have already recognized this PDF as a Cauchy
distribution, but I’ll work through the derivation just to
highlight the geometric interpretation.

Importance sampling for point lights

a b

D

Integrate pdf to obtain cdf:

cdf(t) =
∫

1
D2+t2 dt =

1
D tan

−1 t
D

VANCOUVER, BC | CULVER CITY, CA 28

We start by doing the integral which is just the arctangent

Importance sampling for point lights

a b

D

Use cdf to normalize over [a,b]:

pdf(t) = D
(tan−1 bD− tan

−1 a
D)(D2+t2)

VANCOUVER, BC | CULVER CITY, CA 28

That lets us normalize the expression so it becomes a valid PDF

Importance sampling for point lights

a b

D

θa θb

Use cdf to normalize over [a,b]:

pdf(t) = D
(θb−θa)(D2+t2)

VANCOUVER, BC | CULVER CITY, CA 28

Those arctangents actually have a very precise geometric
meaning: they correspond to the angle toward the endpoints
of the ray.

Importance sampling for point lights

a b

D

θa θb

Invert cdf to obtain distribution for ξ ∈ [0, 1):

t (ξ) = D tan ((1− ξ) θa + ξθb)

VANCOUVER, BC | CULVER CITY, CA 28

And now we can get the final expression for the inverse CDF
which lets us distribute points along the ray. Again looking at
the term inside the tangent, you’ll notice we’re just doing a
linear interpolation between those angles.

Importance sampling for point lights

a b

Sample distribution is equiangular

t (ξ) = D tan ((1− ξ) θa + ξθb)

VANCOUVER, BC | CULVER CITY, CA 28

This means equal steps in the random variable make steps of
equal angles. Thats why we call this distribution equi-angular.

Importance sampling for point lights

If light source lies on the ray (D = 0) use:

pdf(t) =
ab

(b− a)t2

t(ξ) =
ab

b+ (a− b)ξ

Rare corner case but can occur in “flashlight” configuration.

VANCOUVER, BC | CULVER CITY, CA 29

You might have noticed in the formulas I just showed that
things can still break down if D is exactly 0.

But you can still get a simple closed form formula for this case.

It might sound like something that shouldn’t really matter but
this actually came up for us in production when an artist put a
spotlight in exactly the same position as the camera. This is
sometimes called the “flashlight” configuration.

It only takes 2 or 3 extra lines of code, so might as well add it.
It also makes for a good unit test.

Results with 16 samples/pixel

Density sampling Equiangular sampling

VANCOUVER, BC | CULVER CITY, CA 30

So lets look at some results. As we expected - equi-angular
sampling does a much better job at capturing the lighting
around the point light.

Spherical lights can use same equations! (Ω ∝ 1/r2)

Density sampling Equiangular sampling

VANCOUVER, BC | CULVER CITY, CA 31

In fact, even though I described everything so far assuming a
single point light - it works for area lights too.

It turns out that the solid angle of area lights also varies as
1/r2.

So here I have a spherical light that shows a similar
improvement with exactly the same equations.

There are two steps here, first we pick a point along the ray
with equi-angular sampling, and then we fire a ray towards the
light using the regular solid angle based sampling.

Quad lights can use same equations! (Ω ∝ 1/r2)

Density sampling Equiangular sampling

VANCOUVER, BC | CULVER CITY, CA 32

Other shapes like quads work as well.

As long as you can implement solid angle sampling from an
arbitrary point to the light - doing equiangular sampling to
pick that point will give good results.

Many lights

“Importance Sampling of Many Lights
With Adaptive Tree Splitting”

Monday, 3:45PM, Room 402AB

VANCOUVER, BC | CULVER CITY, CA 33

The idea can even be extended to many lights. I won’t go into
the details of this here. My coworker Alex Conty will be giving a
talk on this topic tomorrow.

Mesh lights

“Importance Sampling of Many Lights
With Adaptive Tree Splitting”

Monday, 3:45PM, Room 402AB

VANCOUVER, BC | CULVER CITY, CA 33

Mesh lights will be covered in that talk as well - we handle
those as collections of triangular lights.

Multiple Importance Sampling

Equi-angular Sampling
(pdf(t) ∝ 1/r2)

Density Sampling
(pdf(t) ∝ σsiTi)

MIS
(best of both)

VANCOUVER, BC | CULVER CITY, CA 34

I described equiangular sampling inside homogeneous media
for simplicity, but remember from the ray marching step that
we’ve actually stored a complete representation of the volume
along the ray.

So like I said before, we can use this stored copy of
transmittance and scattering coefficients to compute the
lighting at any point along the ray.

Equi-angular sampling is still effective here, for example with
the point lights inside the cloud.

Multiple Importance Sampling

Equi-angular Sampling
(pdf(t) ∝ 1/r2)

Density Sampling
(pdf(t) ∝ σsiTi)

MIS
(best of both)

VANCOUVER, BC | CULVER CITY, CA 34

But sampling proportionally to transmittance and scattering
has some advantages as well. There’s a third distant light in
this scene that still shows a bit of noise near the “surface” of
the cloud and this goes away with density sampling because it
focuses more samples there.

Multiple Importance Sampling

Equi-angular Sampling
(pdf(t) ∝ 1/r2)

Density Sampling
(pdf(t) ∝ σsiTi)

MIS
(best of both)

VANCOUVER, BC | CULVER CITY, CA 34

Of course like any time we have two sampling techniques that
have orthogonal strengths, combining them by multiple
importance sampling lets us get the best of both worlds.

Optimizations for Multiple Scattering

VANCOUVER, BC | CULVER CITY, CA 35

The last thing left to cover is multiple scattering.

Depth = 0 For a long time, we just assumed we wouldn’t be able to afford
this - but it really is very important.

Here I’ve made a scene with a volumetric cloud surrounded by
atmosphere. That atmosphere is assigned to a roughly planet
sized sphere, and there is just a single distant light. So every
pixel here is lit through a volume.

With only single scattering - the picture doesn’t look like a
cloud at all. The directly lit parts are gray and the shadowed
part is all flat.

Depth = 1 Even just adding a single bounce makes a dramatic difference
to the color of the sky.

Depth = 2 I’ll keep going by doubling the trace depth…

Depth = 4 4…

Depth = 8 8…

Depth = 16 16…

Depth = 32 32…

Depth = 64 At 64 bounces - we’re still seeing new details come out…

Depth = 128 128…

Depth = 256 256…

Depth = 512 512…

Depth = 1024 1024…Now at this point things have sort of stabilized. But I’m
sure we could see a few more areas brighten up if we kept
going.

Of course tracing up this depth was roughly a thousand times
more expensive than the first picture, because we have up to a
thousand segments per path instead of one.

Optimizations for Multiple Scattering

Computing single scattering for every path segment can be wasteful,
particularly in volumes which generate many short bounces.

We can defer single scattering until the whole path has been generated,
and stochastically perform single scattering on a subset of these
segments.

VANCOUVER, BC | CULVER CITY, CA 48

The only optimization we really do to help is to recognize that
doing next-event estimation for all segments or vertices in a
long path can actually be wasteful. When the medium is
dense, we can end up with lots series of segments that make
similar contributions.

So we actually wait until we have an entire path generated
before deciding which segments need to perform single
scattering.

Multiple Scattering

Path built one ray at a time

VANCOUVER, BC | CULVER CITY, CA 49

Let me illustrate this with a diagram. The ray enters the cloud,
and I’m going to show how we build up the path.

Multiple Scattering

Each ray does ray marching until reaching an opacity threshold

VANCOUVER, BC | CULVER CITY, CA 49

Each ray does some ray marching until it leaves the cloud or
reaches some opacity threshold.

Multiple Scattering

Next ray chosen by discrete pdf ∝ σsiTi

VANCOUVER, BC | CULVER CITY, CA 49

We choose the next ray to trace based on a discrete pdf
proportional to scattering times transmission.

Multiple Scattering

Russian roulette can terminate paths early

VANCOUVER, BC | CULVER CITY, CA 49

Now we can apply Russian roulette to terminate any paths that
don’t carry much energy

Multiple Scattering

RR equalizes the weight of surviving paths

VANCOUVER, BC | CULVER CITY, CA 49

This has the effect of roughly equalizing the weight of paths
that do survive

Multiple Scattering

RR does not help albedo=1 case

VANCOUVER, BC | CULVER CITY, CA 49

But Russian roulette doesn’t help at all when albedo is close
to 1. And this is precisely the case where multiple scattering is
really important - like clouds.

Multiple Scattering

VANCOUVER, BC | CULVER CITY, CA 49

...

Multiple Scattering

When path is complete, we have many segments!

VANCOUVER, BC | CULVER CITY, CA 49

So when our path is complete - we have this whole collection
of segments…

Multiple Scattering

Each has a full representation of volume along it

VANCOUVER, BC | CULVER CITY, CA 49

…and each one stores a full description of the volume along it.

Multiple Scattering

We could connect each to the light …

VANCOUVER, BC | CULVER CITY, CA 49

We could just connect each one to the light…

Multiple Scattering

…or just a random subset

VANCOUVER, BC | CULVER CITY, CA 49

…or just some random subset of them

Multiple Scattering

Trades efficiency for variance

VANCOUVER, BC | CULVER CITY, CA 49

This is the classic trade-off between efficiency and variance.

In our tests, we’ve found this paid off. It sped up renders
without adding too much noise. But I don’t want to oversell
this as a solution either. The frames of the cloud at really high
depth that I showed a minute ago are still very expensive.

The Spectral Decomposition Tracking paper being presented
this year at Siggraph looks like a much more promising
technique and its something we would like to investigate.

Conclusion

VANCOUVER, BC | CULVER CITY, CA 50

So let me just wrap up now with a few more observations…

Hindsights

• Stack based medium tracking is complex, but necessary

• Volumes and SSS share the same code, only tracking method changes
• Decoupled ray marching provides good pdfs, but requires many lookups
• Equiangular sampling essential when lights are inside volumes
• Multiple scattering still slow when albedo is high

VANCOUVER, BC | CULVER CITY, CA 51

Stack based medium tracking is tricky to implement and
carrying extra state on each ray can be a roadblock to
efficiently vectorizing the renderer.

At the same time, we haven’t found any better way to correctly
render liquids and glass. And now that we have this system in
place, productions are leveraging it more and more.

Hindsights

• Stack based medium tracking is complex, but necessary

• Volumes and SSS share the same code, only tracking method changes

• Decoupled ray marching provides good pdfs, but requires many lookups
• Equiangular sampling essential when lights are inside volumes
• Multiple scattering still slow when albedo is high

VANCOUVER, BC | CULVER CITY, CA 51

Because we have these two ways of tracking volumes, we’ve
been able to unify subsurface scattering and volumes. They no
longer are really different things in our system, which has
really helped make the system more predictable. Artists are
free to put volumes inside refractive objects and can expect
the same results as if they had used subsurface scattering
defined through the surface shader.

We’ll be discussing this a bit more in the physically based
shading course this afternoon.

Hindsights

• Stack based medium tracking is complex, but necessary

• Volumes and SSS share the same code, only tracking method changes
• Decoupled ray marching provides good pdfs, but requires many lookups

• Equiangular sampling essential when lights are inside volumes
• Multiple scattering still slow when albedo is high

VANCOUVER, BC | CULVER CITY, CA 51

Next - decoupled ray marching provides really good pdfs - but
it does requires lots of lookups which makes it expensive over
many bounces.

Hindsights

• Stack based medium tracking is complex, but necessary

• Volumes and SSS share the same code, only tracking method changes
• Decoupled ray marching provides good pdfs, but requires many lookups
• Equiangular sampling essential when lights are inside volumes

• Multiple scattering still slow when albedo is high

VANCOUVER, BC | CULVER CITY, CA 51

Equiangular sampling is really essential when lights are inside
volumes. They’re a much stronger source of variance so you
definitely need a dedicated sampling technique for this case.

Hindsights

• Stack based medium tracking is complex, but necessary

• Volumes and SSS share the same code, only tracking method changes
• Decoupled ray marching provides good pdfs, but requires many lookups
• Equiangular sampling essential when lights are inside volumes
• Multiple scattering still slow when albedo is high

VANCOUVER, BC | CULVER CITY, CA 51

And lastly as I just mentioned – multiple scattering is still slow
when the albedo is really high.

I mentioned one way to help reduce the cost a little by firing
fewer shadow rays, but we see this as just a short term
solution. We really just need better algorithms to handle this
case well. Again the spectral decomposition tracking paper
from this year looks very promising.

Acknowledgements

Rendering Team:

• Alex Conty
• Cliff Stein
• Larry Gritz

Alumni:

• Magnus Wrenninge

VANCOUVER, BC | CULVER CITY, CA 52

I’d like to acknowledge my co-workers on the rendering team
at Imageworks, in particular Alex Conty who actually
implemented the messy details of medium stacks and the
multiple scattering optimizations.

I also want to acknowledge Magnus who participated in the
very early design of volume rendering support in our renderer
and did a lot of the early testing of it.

Thank You! Questions?

To hear more about our renderer please see:
• Course: “Physically Based Shading In Theory and Practice”, Sunday 2:00PM, Room 150/151
• Talk: “Importance Sampling of Many Lights With Adaptive Tree Splitting” - Monday 3:45PM, Room 402AB
• Course: “Path Tracing in Production - Part 2: Making Movies”, Wednesday 2:00PM, Room 408AB

With that I would like to conclude my talk.

Here are the references to the other courses I’ll be
participating in, both this afternoon and on Wednesday.

Thank you for listening and I’m happy to take any questions.

