
Oz: The Great and Volumetric

Magnus Wrenninge
Sony Pictures Imageworks

Chris Kulla
Sony Pictures Imageworks

Viktor Lundqvist
Sony Pictures Imageworks

Figure 1: Renders from Oz: The Great and Powerful. The left image shows a water simulation with volumetric spray and foam
elements. The right image shows the effect of the multiple scattering approximation. c©2013 Disney Enterprises Inc.

For Oz: The Great and Powerful, Imageworks provided over
1100 shots, 400 of which included substantial volumetric elements.
We discuss the challenges of various sequences and optimizations
to our renderer performed during the course of production.

Path traced volumes in production Starting on The Amazing
Spiderman and Men In Black 3, Imageworks’ in-house version of
Arnold has supported path tracing of volumes alongside surfaces.
The pipeline is built around the Field3D file format, and volume
primitives support all standard light sources, including area lights
and textured skydomes. We maintain reasonable render times
with the importance sampling techniques detailed in [Kulla and
Fajardo 2012].

To lighters, volumes were seen as just another scene graph
location in Katana, with a geometric proxy representation for fast
previewing and layout. Named attributes of each field automati-
cally bind to similarly named shader parameters, so that TDs
can write custom shaders easily. Under the hood, the Field3D
primitive supported arbitrary numbers of fields in each .f3d file,
and had full support for dense, sparse and MAC fields of mixed
bit depths.

Multiple scattering approximation A large portion of the volu-
metric work on Oz consisted of fog, mist, steam and clouds, all of
which are high albedo media. Inspired by the work of Bouthors
[2011] on cloud rendering, where multiple shadow maps were used
to approximate different orders of multiple scattering, we devel-
oped an approximation for path tracing that incurs little render
time overhead, adds little extra noise, and can be importance
sampled. The main idea is to artificially lower the extinction
coefficient σt along the shadow ray to let more light reach the
shaded point. But rather than use a fixed scaling factor, we use
a summation over several scales. We also adjust the local phase
function eccentricity g and local scattering coefficient σs such
that the total contribution of light at a given point is:

L =

N−1∑
i=0

Li (1)

Li = σsb
iLlight(ωi)p

(
ωi, ωo, c

ig
)
e
−ai
∫ t

0
σt(s)ds

(2)

where N (“octaves”), a (“attenuation”), b (“contribution”), and
c (“eccentricity attenuation”) are user-tunable parameters. De-
faults of N = 8 and a = b = c = 1/2 are a good starting point
for all the cases we tried. Since the change in eccentricity in
the phase function makes the choice of sampling direction more
complex, we stochastically choose a single octave with probability
of bi. This allows keeping the ray budget constant and renders

with little extra noise. These parameters gave artists simple con-
trol over the multiple scattering effect, without having to tweak
scattering lengths manually. This approximation can be used on
camera-shadow rays when only simulating direct lighting, or on
camera-indirect-shadow rays if already simulating one bounce.
The latter option is more expensive but more accurately captures
the diffusion effect.

Shading system Volumes were also integrated into Arnold’s
OSL-based shading system, which allowed TDs to build custom
shaders for volumes in Katana, just as they would for surface
shaders. In order to provide a standardized interface to the
lighting pipeline, a “root” illumination shader was provided to
the TDs, into which arbitrary shader nodes were hooked. Several
sequences relied heavily on custom shaders, for effects such as
fire, explosions, and ash clouds, and also for procedural noise
banks used to quickly layout generic fog.

Efficient traversal of frustum buffers For the case of sparse
uniform volumes, we limit ray marching to occupied blocks by
using Bresenham traversal. However, for frustum buffers there
is no guarantee that an arbitrary ray remains straight in voxel
space, as the perspective division may bend a ray into a curved
path. Rather than attempt some form of curved ray marching, we
observe that the projection mapping does not bend axis-aligned
planes and build a kd-tree over the sparse blocks in voxel space.
During ray intersections tests, the planes are transformed into
world space which avoids testing against curved rays. To support
motion blurred mappings and reduce the size of the tree we
perform the plane transform on the fly during traversal. Since
the planes are axis-aligned, this is a very simple operation on the
perspective matrix entries. We pay special attention to numerical
robustness to ensure the continuity of the detected occupied
intervals. This sped up the integration of high resolution buffers
greatly, saving the overhead of shader calls in regions that are
known to be empty. As our method makes no assumption about
ray direction, it applies equally well to shadow rays and other
non-view-aligned rays.

References

Kulla, C., and Fajardo, M. 2012. Importance sampling
techniques for path tracing in participating media. Computer
Graphics Forum 31, 4, 1519–1528.

Wrenninge, M., Bin Zafar, N., Harding, O., Graham, G.,
Tessendorf, J., Grant, V., Clinton, A., and Bouthors,
A. 2011. Production volume rendering 2: Systems. ACM
SIGGRAPH 2011 Courses.


