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Importance Sampling of Many Lights with Adaptive Tree
Splitting

ALEJANDRO CONTY ESTEVEZ, Sony Pictures Imageworks

CHRISTOPHER KULLA, Sony Pictures Imageworks

Fig. 1. A procedural city with 363,036 lights, one GI bounce and participating media. Rendered with 16
samples per pixel, each shading point takes an average of 7 shadow rays (45 for the volume integral). We
shoot an average of 1700 rays per pixel. The image rendered in 20 minutes on a quad core Intel i7.

We present a technique to importance sample large collections of lights (including mesh lights as collections

of small emitters) in the context of Monte-Carlo path tracing. A bounding volume hierarchy over all emitters

is traversed at each shading point using a single random number in a way that importance samples their

predicted contribution. The tree aggregates energy, spatial and orientation information from the emitters to

enable accurate prediction of the effect of a cluster of lights on any given shading point. We further improve the

performance of the algorithm by forcing splitting until the importance of a cluster is sufficiently representative

of its contents.
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1 INTRODUCTION
Direct lighting calculations are a critical part of modern path tracing renderers with next event

estimation. While sampling from simple light shapes [Shirley et al. 1996] is well understood,

relatively little attention has been devoted to the problem of efficiently sampling from large

collections of such shapes. In production renderers, this problem appears both in the form of scenes

containing many distinct lights (Figure 1), and scenes with meshes acting as emitters (sometimes
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referred to as “mesh lights”) (Figure 15) where the triangles making up the surface act as a large

collection of emitters. Naturally both cases are often combined as well, for example in a night

time city scape illuminated by many intricate neon signs and street lamps. We address these goals

by introducing a hierarchy over the lights that is efficient to build (similar in cost to building

acceleration structures for ray intersection) as well as an efficient traversal mechanism that allows

choosing lights from a large set with sub-linear cost and in a way that importance samples their

expected contribution.

The use of hierarchical structures to guide sampling of many lights similarly to our method has

been discussed by practitioners in recent years [Gospodnetić 2017; Keller et al. 2017; Vegdahl 2014],

though to our knowledge no publication discusses in detail their approach to tree construction

or traversal. This paper aims to describe how we solved these problems and makes the following

original contributions:

• The Surface Area Orientation Heuristic (SAOH) which guides construction of the hierarchy

(Section 4.4)

• An importance measure from a cluster of lights to a shading point (Section 5.1) or ray segment

in participating media (Section 5.2)

• Adaptive tree splitting which improves performance by delaying stochastic traversal until

certain criteria are met (Section 5.4)

For completeness, we aim to describe all other details of our algorithm as well including exactly

how we represent each light cluster (Section 4) and how to efficiently traverse the tree for sampling

(Section 5).

2 PREVIOUS WORK
Naively sampling every light source in a scene is impractical above a few dozen light sources. In

fact, the mere act of looping over the lights can be quite costly even if shadow rays are skipped.

Early optimization techniques such as shadow ray reduction [Ward 1994] are not well-suited to

scenes with more than a few hundred light sources because they still require a linear scan across

lights.

Early work on this problem [Shirley et al. 1996] recognized that while a uniform or energy based

PDF over the lights can produce reasonable results when all lights have similar influence over the

image, this quickly breaks down in scenes where the light sources have more localized influence.

Building a probability density function (PDF) per point is impractical as it would require the loop

over all lights we are trying to avoid. One approach [Vévoda and Křivánek 2016] is to amortize the

creation of localized PDFs within cells of a uniform grid, but the initialization of such a structure

can be quite costly. We perform a more detailed comparison in Section 7.

Another simple yet effective strategy is to bound the region of influence of each light and

insert them into a hierarchy to quickly select which lights affect any given point [Bikker 2007].

Unfortunately this method requires clamping or modifying the light falloff to avoid infinite extents

which introduces bias. Stochastic Light Culling [Tokuyoshi and Harada 2016] randomizes the light

extent to remove bias, but it requires several passes with different trees to hide the artifacts. In

scenes with densely packed light sources (Figure 17) the amount of overlap between lights can still

be quite high.

Rendering with many lights has also been studied in the context of VPL rendering. For a detailed

overview of this long line of research, we refer the reader to the excellent state of the art report

by Dachsbacher et al. [2014]. In this context, light sources are first discretized into a large pool of

path vertices, which are then combined with eye paths to form the image. The set of VPLs may be

large (sometimes even including indirect lighting path vertices to represent indirect illumination
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as well) which has led to the creation of various scalable methods to reduce the cost of looping

over all VPLs to sum up the contributions. Hierarchical techniques such as Lightcuts [Walter et al.

2005] or its predecessor [Paquette et al. 1998] avoid this linear cost during rendering by building a

hierarchy over the lights upfront and traversing the tree per shading point to evaluate the large

sum approximately. The biggest drawback of VPL methods lies in the initial discretization of the

illumination into points. This requires rebuilding the tree over different discretizations per pass

to remove correlation artifacts and introduces a weak singularity near each VPL which must be

clamped or otherwise accounted for. In contrast, our method assumes individual light sources can

be importance sampled directly and that the important problem to solve is light selection. Likewise,
we only concentrate on direct lighting calculations as we assume indirect lighting is accounted for

by path tracing. Nonetheless, our adaptive tree splitting heuristic bears some resemblance to the cut
idea introduced in Lightcuts [Walter et al. 2005] which we discuss in more detail in Section 5.4.

Concurrently with our work, Vévoda et al. [2018] have studied the same problem from a different

perspective. They use a light hierarchy to produce small clusters of lights and use learning techniques

to derive cluster selection probabilities with data gathered during rendering. The data is cached

spatially as in their precursor work [Vévoda and Křivánek 2016] to adapt to changing conditions

within the image. This allows them to take visibility information into account and therefore

avoid spending samples on fully occluded lights. On the other hand, they do not directly address

participating media or study in detail the impact of grid resolution on their approach. For instance

we believe that the simple heuristic of splitting 64 times along the shortest scene dimension may

fail in scenes with wide spatial extents. Their work is largely orthogonal to ours and we discuss

opportunities to combine their insights with ours in the conclusion (Section 8).

3 METHOD OVERVIEW
Modern path tracers rely on multiple importance sampling to efficiently combine importance

sampling from the light shape and the shading point’s BSDF [Veach and Guibas 1995]. We observed

that we had to use a bounding volume hierarchy to accelerate intersection tests of BSDF samples
against large collections of lights. We therefore started exploring ways to use a similar hierarchy

for importance sampling the light samples as well.
We will present our method in two parts. We first describe the light hierarchy construction

(Section 4). Here we will detail how our hierarchy differs from those traditionally used for fast

intersection testing. In particular, we will describe the contents of each cluster (Section 4.1), how

we take into account the orientation of lights during construction (Section 4.3) and how this drives

the heuristic we use for top-down construction (Section 4.4).

Secondly, we describe how this tree is useful during rendering by describing how we can predict

the relative importance of a cluster to a given shading point for surfaces (Section 5.1) or ray for

participating media (Section 5.2). This importance measure directly drives our stochastic tree

traversal which is used for choosing which lights to sample (Section 5.3). Finally we demonstrate

our adaptive splitting criteria which delays stochastic tree traversal (Section 5.4) until certain

criteria are met to improve quality.

4 LIGHT HIERARCHY CONSTRUCTION
4.1 Cluster Representation
Traditional bounding volume hierarchies (BVHs) as used for intersection testing only store spatial

bounding volumes. In our case, we need to augment this with additional information to provide

bounds on the cone of normals and emission profiles contained within a cluster.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 25. Publication date: August 2018.



25:4 Conty, Kulla

Light Type Axis θo θe

Quad quad’s normal 0 π/2
Sphere any unit vector π π/2
Point any unit vector π π/2
Spot spot’s axis 0 spot aperture

Mesh from root cluster of hierarchy

Table 1. Values for the orientation bound attributes for a
few common examples. The angle θe does not contribute
anything in the Sphere and Point lights, but we define it as
π/2 for consistency.

We represent the orientation cone with an axis and two angles (θo and θe ). The first bounds
the normals of the emitters. For example a cluster containing a single flat emitter (like a quad or

triangle) will have an axis equal to the normal and a zero angle. As we group more lights into the

cluster, the cone should represent a tight bound on the possible normals. Other light types like

spheres, points or meshes typically will start with a normal orientation bound covering the entire

sphere.

The second bound we track represents the emission profile of each emitter. For uniform emitters

this angle will be π/2, but it could be smaller for lights with custom profiles or spotlights. In the

case of a mesh light, we use the fact that the mesh light is also clustered using a hierarchy and that

we can use its root node directly. We summarize examples for various emitter types in Table 1. We

note that the particular choice of angles for spotlights reflects that in our renderer spot lights are

represented as discs with a restricted emission profile.

Axis

All lights point inside θo

θe adds to θo
θe

Fig. 2. The emission extent θe expands the bounds
of the normal orientation bounding cone θo . Several
lights can be enclosed in this orientation bounding
structure.

θo (a)
θe (a) + θo (a)

θe (b) + θo (b)
θo (b)

θe + θo
θo

Fig. 3. The axis of the union is chosen in the middle of
the arc that covers both θo (a) and θo (b) input cones.
From this vector the new angle θo is half the covering
arc and θe = max{θe (a),θe (b)}

Dividing the bounds in these two angles allows us to account for the importance falloff from θo
to θo + θe following a cosine law. This is important for flat emitters, which are the basic primitives

in mesh lights, one of the primary motivations for the work in this paper.

From the bounds of individual clusters, we also need a way to merge clusters together. Our
procedure for merging the bounding cones is summarized in Algorithm 1. The basic idea is to

compute a new axis and θo angle to cover all the emitters with the smallest possible cone. The new

angle θe is chosen as the maximum emission profile of the two clusters. Our method is a faster,

greedy alternative to the minimum bounding cone method from [Barequet and Elber 2005]. While

this operation is not strictly associative in all cases, we have found it to be stable enough in practice.
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Algorithm 1 Compute the union of two non-empty bounding cones a and b as tuples of three

values: axis, θo and θe

function ConeUnion(a,b)
if θo(b) > θo(a) then

Swap(a,b)
end if
θd ← arccos(axis(a) · axis(b))
θe ← max{θe (a),θe (b)}
if min{θd + θo(b),π } ≤ θo(a) then

return {axis(a), θo(a), θe } ▷ Bounds a already covers b
else

θo ← (θo(a) + θd + θo(b))/2 ▷ New cone over a and b
if π ≤ θo then

return {axis(a), π , θe }
end if

▷ Rotate a’s axis towards b’s axis so θo covers both from it

θr ← θo − θo(a)
axis← Rotate(axis(a), axis(a) × axis(b), θr )
return {axis, θo , θe }

end if
end function

Figure 3 shows how Algorithm 1 merges two input cones. This is clearly the smallest cone

covering the orientation directions and emission profiles of the operands, but if we apply this

union incrementally to a collection of cones the result is likely not optimal. Nevertheless, it is good

enough for a fast one-pass approach. An improved (but slower) system could compute the new

centroid axis in a first pass and then find the minimum angle θo covering the entire collection.

4.2 Tree Construction
We organize lights into a binary tree very similar to the BVH typically used for ray intersection.

We choose to organize our builder around spatial binning [Wald 2007]. The only difference is that

we track the additional information of the orientation bounds and sum the light powers during the

construction. In ray tracing, the Surface Area Heuristic aims to minimize the cost of intersection

(represented by the number of primitives in a cluster). The probability of intersecting a smaller

cluster given that we have intersected its parent is represented by the ratio of surface areas which

produces a simple formula to predict the relative cost of a split.

For our application, we would like to evenly distribute the emitter power within the tree. The

decision about how to partition any given cluster into smaller ones should also take into account

that it is preferable to keep lights with similar orientations together (see Figure 5). The overall

surface area of a cluster is also important as it figures implicitly in our cluster importance measure

that drives the traversal (Section 5). The bigger this area, the more uncertainty about the position

of emitters inside the cluster. Intuitively, lights that are spatially close together should be clustered

together because the geometric falloff of 1/d2 will be similar for all lights in that cluster. Likewise,

given similar distances to a group of lights, we want to cluster those oriented similarly as they will

make similar contributions.
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After construction, each level of the hierarchy stores spatial and orientation bounds, as well as

the energy total for all lights contained below. These quantities are used by the cluster importance

measure explained in Section 5.

4.3 Orientation Bounds Area Measure
Before describing the SAOH equation used for splitting the tree during top-down construction, we

detail how we turn an orientation bounds into a scalar measure that predicts its relative impact on

the scene.

θo
θe

Axis

Fig. 4. The dark disc bounded by θo contributes its
whole solid angle to the measure, while the light sector
spawned by θe adds its cosine weighted solid angle.

The surface area of a box is a good indicator of the overall solid angle of that region for points

anywhere in space. A box with smaller surface area can be expected to have proportionally less

impact on a scene. For the orientation bounds we must account both for the cone of normals (θo ),
as well as the possible falloff from that cone (θe ) which accounts for the emission profile (usually

π/2). Every possible normal within the θo cone affects a range of directions. This is important,

because as our intuition shows in looking at Figure 4, if θo is already small, reducing it to half

barely changes the total measure of the bounds, which would be given by:

MΩ = 2π

[
(1 − cosθo) +

∫ θw

θo
cos(x − θo) sin(x)dx

]
.

where θw = min(θo + θe ,π ). This integral has a simple solution:

MΩ = 2π (1 − cosθo) +
π

2

(
2θw sinθo − cos (θo − 2θw ) − 2θo sinθo + cosθo

)
. (1)

For the common case of uniform emitters (θe = π/2), the measureMΩ varies smoothly between

π (for a flat emitter) to 4π for a complete sphere of directions.

4.4 Surface Area Orientation Heuristic
During the top-down tree construction, we measure the relative influence of a cluster to its parents

by comparing the ratio products of the area measureMA (the area of the bounding box) andMΩ

(detailed in Equation 1). These ratios are weighted against the energy in each cluster. All the axes of

the 3D bounding box are explored. At each split candidate on axis i and location s , the cost function

Csplit(i, s) = Kr (i)
ELMA(L)MΩ(L) + ERMA(R)MΩ(R)

MAMΩ
, (2)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 25. Publication date: August 2018.



Importance Sampling of Many Lights with Adaptive Tree Splitting 25:7

θo =
π
2

θo =
π
2

θo = π θo = π

Fig. 5. A cross section of amesh light inside a cluster.
Our SAOH heuristic favors the split on the left since
it also divides the orientation space in half. This
enables better culling during traversal.

SAH

SAOH

Fig. 6. We show the effect of the SAOH heuristic on
sampling. The model is lit by a toroidal mesh light.
The difference is subtle but noticeable.

will determine the cost of splitting the current list of emitters into smaller clusters L and R, where
El and Er are the corresponding energy sums. We also consider a regularization factor

Kr (i) =
length

max

length(i)

for the axis i being considered, where length
max

is the maximum length of the cluster’s 3D box.

This penalizes the choice of very thin boxes which hurt sample stratification and are not well

represented by their bounding cones when seen from a shading point (see section 5.1).

The cost function tries to balance and minimize the probability of sampling each of the two

resulting branches given a random shading point. Termination of the tree construction is driven

by either reaching a single emitter per leaf, or by finding a point where the splitting cost is never

better than the cost of producing a leaf:

Cleaf = Ec

which is just the total energy of the current cluster. This small change to the SAH lets us better

equalize the overall contribution of each cluster to the scene and keep lights with similar orientations

in different branches of the tree. While the impact on random layouts of lights is small, it is very

helpful in mesh lights where there is an orientation locality on common surfaces, as shown in

Figure 6.

5 LIGHT HIERARCHY TRAVERSAL
5.1 Cluster Importance for Surfaces
Given a hierarchy of light clusters, we must have a way to measure at every node the relative

contribution that cluster could make to the current shading point (Figure 7). The importance is

computed from both the spatial and orientation cluster bounds, and a shading point. Our heuristic

considers both geometric decay due to the inverse square distance, and the cosine factor from

the orientation bounds of the cluster. Let θu be the angle of a cone that would cover the entire

bounding box as seen from the shading point, θi the incident angle from the shading point to the
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Axis

d
Shading point

N

θo

θ
θu

θi

Fig. 7. Using the cluster bounds to compute the
importance from a shading point. The angle θu cap-
tures the solid angle of the entire box, because emit-
ters could be at any location within it. Note that θe
is only used to clip the angle θ − θo − θu

AxisN

θmin

v

v1

v0

Fig. 8. In participating media, getting a conserva-
tive estimate for the orientation term is a maximiza-
tion problem on the cosine v (running along the
line integral) forms with the axis of the orientation
bounds.

cluster’s center, and d the distance of this segment. We define our measure as

Is =
fa | cosθ ′i | E

d2
×
{
cos(θ ′) θ ′ < θe

0 otherwise,
(3)

where E is the total energy of the emitters inside the cluster, θ ′i = max{θi − θu , 0} is the minimum

incidence angle and θ ′ = max{θ − θo − θu , 0} is the minimum angle an emitter’s normal would

form with the direction to the shading point as shown in Figure 7. That is, the angle of the cluster

orientation cone (Axis,θo) with the vector from the center towards the shading point, minus θu .
Finally the term fa | cosθ ′i | is a conservative and arbitrary approximation of the surface BSDF fa
times the irradiance. We have found that a diffuse approximation here is nicely complemented by

BRDF sampling via MIS, but taking into account an approximate form of the specular response is

an interesting avenue for future work.

The location of an emitter inside the box is unknown so we lack certainty about the angle formed

between its direction to the shading point and the box’s orientation axis. We use the center of the

box and consider the θu cone uncertainty angle. The orientation part of the measure needs the

angle from the orientation cone θ − θo , but we need to also subtract θu to make a conservative

guess. This results in the minimum angle any emitter in the cluster will form with the direction

towards the shading point. A similar precaution is taken for the irradiance angle θ ′i .
Finally, we compute the maximum cosine for any emitter. The emission profile angle θe is used

for clamping as shown in Equation 3. When smaller than π/2, indicative of one or more spot lights,

the cosine factor might not be an exact representation of the emitted light, but we found it to be

safe in practice.

We want emphasize that the energy term E used in Equation 3, when computed for a single

emitter, is not the total energy emitted in all directions. Instead, we use the maximum radiance

emitted in some direction integrated over the emitting area. This is consistent with our equations

for importance, which try to approximate the energy arriving at the shading point.

5.2 Cluster Importance for Participating Media
When computing lighting in participating media, we no longer have a single shading point but a line.

We assume that the direct lighting will be computed through a form of equiangular sampling [Kulla
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and Fajardo 2012]. In this case, the inverse squared falloff actually becomes closer to inverse linear.

This is due to the following integral over the line:∫ b

a

1

x2 + d2
dx =

θb − θa
d

(4)

where d is the shortest distance between a point and the current ray. This normalization term is

what remains after equiangular integration for a specific light. We therefore adjust our importance

heuristic to try and account for a 1/d falloff instead of a 1/d2 falloff.
In Figure 8 we show how the vector v runs along the volume line integral and on a plane with

normal N containing the line and the cluster center. The point along the ray that minimizes the

distance to the cluster (dmin)might not coincide with the minimum angle (θmin). We compute both

points independently to get a conservative importance measure. That is, the geometric factor is

computed with the minimum distance and the orientation factor with the minimum angle, even

though they might not correspond to the same location.

The orientation factor given the bounds axis a comes from the maximum dot product v · a,
where v = o0 cosφ + o1 sinφ is a parametric vector over an ortho-normal basis o0, o1 coming

from v0, v1. This basis can be obtained from v0/∥v0∥ and the ortho-normalized vector from v1.
Applying derivative cancellation of v · a for some angle φ0, if the maximum cosine at the boundary

is bmax = max{v0 · a, v1 · a}, then we can compute θmin :

cosφ0 =
o0 · a√

(o0 · a)2 + (o1 · a)2
(5)

cosθmin =

{
bmax o1 · a < 0 ∨ v0 · v1 < cosφ0

cosφ0 o0 + sinφ0 o1 otherwise.
(6)

When o1 · a < 0 the derivative cancels at a minimum and has to be ignored. Then, the importance

measure for the cluster from a volumetric segment is just:

Iv =
cos (max{θmin − θo − θu , 0}) E

dmin
. (7)

Note, we clip the result to 0 if θmin − θo − θu exceeds θe as in Equation 3, which we omit here for

brevity.

5.3 Importance Sampled Tree Traversal
We traverse our binary tree stochastically to randomly choose a single light. This can be viewed

as a 1D version hierarchical sample warping [Clarberg et al. 2005]. At every branch in the tree we

compute an importance term I by either the surface or volume formulation described earlier to

approximate the potential contribution of lights within the cluster. We choose between the left

or right subtrees by assigning the probability PL = IL/(IL + IR) to the left child and similarly PR
to the right. A single random number ξ that we rescale after each decision guides the traversal

until we reach a leaf. At the leaves of the tree, if we have more than one light to choose from we

simply build a discrete probability distribution on the fly, again using our importance measure. The

pseudo-code in Algorithm 2 summarizes this process. Obtaining the corresponding probability for

the chosen light is equally simple.

Note that the importance measure logic is the same regardless of being applied to a cluster or an

emitter, which is a special case of a cluster with just one member. The better I approximates the

actual contribution of lights in the cluster, the more variance reduction we can expect. Our measure

from the previous section works well if the cluster is far away from the shading point. When the
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Algorithm 2 Choose a random light from a tree T for a given shading point P and a random

numbler ξ .

procedure PickLight(T , P , ξ )
if IsLeaf(T ) then

PDF← [ ]
for e in Emitters(T ) do

PDF← PDF + [Importance(e)]
end for
CDF← Cumulative(Normalize(PDF))
return SampleCDF(CDF, Emitters(T ), ξ )

else
IL ← Importance(Left(T ))
IR ← Importance(Right(T ))
if ξ < IL/(IL + IR ) then

ξ ← ξ (IL + IR )/IL
return PickLight(Left(T ), P , ξ )

else
ξ ← (ξ (IL + IR ) − IL)/IR
return PickLight(Right(T ), P , ξ )

end if
end if

end procedure

Our method Energy based sampling

Fig. 9. A long spiral mesh light and participating media. We compare against energy based sampling. Both
images rendered in 2 minutes.

cluster is close or when the bounds contain the shading point, the measure is less effective. The

splitting heuristic described in the following section can mitigate this weakness.

On its own, this stochastic traversal allows unbiased rendering of scenes with many lights. It

works particularly well for collections of emitting triangle lights (mesh lights) as seen in Figure 9.

5.4 Adaptive Splitting Heuristic
One weakness of the purely stochastic tree traversal is that the predicted importance I is sometimes

inaccurate, particularly near the root of the tree where the bounds are large. This can lead some

samples to be directed towards subtrees that will ultimately make smaller contributions. Wemitigate

this weakness by forcing splitting during traversal until we gain confidence over the quality of our

importance criteria I . This process resembles the cut selection from the Lightcuts algorithm, except

that instead of computing final lighting from the chosen clusters, we continue with stochastic

traversal to sample lights from the actual emitters in the leaves. This means our cuts can be quite

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 25. Publication date: August 2018.
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shallow without affecting the accuracy of the result. They only serve as a way to force exploration

to multiple branches of the tree at once.

Shading Point

Fig. 10. We draw three samples from the gray nodes, the other
two upper in the tree are split according to our heuristic. From
the depicted shading point the estimated variance scores too high
to reliably work with a single random light from the whole tree.

The decision to split traversal into both branches is based on the estimated variance of the

lighting within it. We consider two sources of variance: the energy differences between the emitters

Threshold = 0.64, time 30s Threshold = 0.04, time 17s Threshold = 0.02, time 7s Threshold = 0.0, time 3s

Fig. 11. A spiral of rounded diffuse objects, each with a point light located above for a total of 10k lights.
Splitting thresholds in decreasing order show the response in render time and quality. This shows how using
more than one random light per point can be very beneficial.

2
3

2
4

2
5

2
6

2
7

2
8

2
9

10
−2

10
−1

10
0

shadow rays

R
M
S
E

Power

0.00

0.02

0.04

0.64

Fig. 12. RMS Error as a function of shadow rays for
the image from Figure 11. Naive power based sampling
has high error, even compared to ours without any
splitting (0.0). Increasing the split factor improves the
error convergence until we get to diminishing returns.
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Fig. 13. RMS Error as a function of shadow rays for
the image from Figure 14. Here, the ideal split rate is
around 0.16; additional splitting reduces the error at
too great a cost to be worthwhile.
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in the tree and the geometric term 1/d2. The variance in emitted power is stored explicitly in each

cluster. For the geometric term, we can compute the continuous mean and variance of the geometric

term д as follows:

E[д] = 1

b − a

∫ b

a
1/x2dx = 1

ab
, (8)

V [д] = E[д2] − E[д]2

=
1

b − a

∫ b

a
1/x4dx − 1

a2b2

=
b3 − a3

3(b − a)a3b3 −
1

a2b2
, (9)

where (a,b) is the range where the distance to an emitter in the cluster varies. This can be simply

obtained from the cluster center and the radius of the bounding sphere. The total light variance

from the cluster is just the product variance between V [д] and V [e], the emitter energy variance

recorded in the node:

σ 2 =
(
V [e]V [д] +V [e]E[д]2 + E[e]2V [д]

)
N 2, (10)

where N is the number of emitters in the cluster and V [e] is the precomputed variance of the

emitters energy stored in the cluster. We remap this value to the [0, 1] range using 4

√
1/(1 + σ ) so

the user can control the amount of splitting in a simple way. At any point in the traversal where

this estimate is under the threshold we continue traversing on both subtrees. Otherwise we use

stochastic traversal as seen earlier and disable further evaluation of the split heuristic.

Algorithm 3 Light traversal with splitting. Returns a list of lights to use from the tree T for the

shading point P .

procedure GetLights(T , P , ξ )
if SplitMeasure(T) < UserThreshold then

L← GetLights(Left(T ), P , ξ ) ∪ GetLights(Right(T ), P , ξ )
else

L← { PickLight(T , P) } ▷ One light is enough
end if
return L

end procedure

For the case of participating media, we have found that although our importance measure

switches to inverse linear decay, we saw better performance from using the split heuristic above

(which assumes a quadratic decay). In both cases, we are ignoring the effect of transmittance which

tends to further dampen the falloff. In practice we have found that using the same formula as for

surfaces prevents over-splitting, though it remains to be seen if an even better heuristic is possible.

The effects of this adaptive heuristic can be seen in Figure 14. In an equal time comparison, we

have found that splitting always outperforms purely stochastic traversal.

6 IMPLEMENTATION DETAILS
We have integrated this algorithm into a production path tracer designed for film production. We

support the use of multiple lights per shading point, and therefore the adaptive splitting works

very well in this case. In the case of mesh lights, our system assumes that it can draw individual
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Threshold = 0.0, 16spp, time 24s

Threshold = 0.0, 256spp, time 180s

Threshold = 0.32, 16spp, time 120s

Fig. 14. A procedural city with more than 300k lights and surface rendering only. The top two rows were
rendered without splitting and with one shadow ray per shading point. The bottom row was rendered with
splitting which clearly illustrates its advantage over simply increasing pixel sampling rates.

samples and therefore use of the adaptive split heuristic is disabled. Despite this, our system offers

much better performance compared to naive approaches such as uniform sampling.

When splitting is disabled, our cluster importance measure may not be fully robust for nearby

shading points. The center of the cluster is not representative of the emitter positions over short

distances. We work around this by clamping the distance to half the radius of the cluster. This

prevents the geometric term from increasing uncontrollably when it is not reliable.

Computing the PDF in Algorithm 2 is trivial, and splitting does not alter it since it is a deterministic

process. However, to use our method with MIS, we need to be able to evaluate the probability of

an arbitrary light source. This requires the ability to reconstruct the path towards a specific leaf.

We chose to use bit-trails [Laine 2010] to encode the left/right decisions required to reach each

light source as an integer. This provides a compact encoding that does not require the presence

of parent pointers in the light tree. When a ray associated with a BSDF sample intersects a light

source, we use the bit-trail path through the tree to traverse our light hierarchy while computing

the probability, similarly to Algorithm 2.

7 RESULTS
This system has been in use at our studio for over a year, successfully empowering artists to freely

add as many lights to a scene as they want. Since it can be used for both mesh lights and large light

collections, the benefit has been two-fold. Mesh lights do not use the splitting mechanism, since

only one sample at a time is expected in our API, but they are the biggest beneficiaries from the

orientation term of our importance measure. In Figure 15 we show the impact of the orientation

term on top of the geometric one for a mesh light.
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Energy only

Energy + distance

Energy + distance +

orientation

Fig. 15. Our algorithm applied to a mesh light. The
three insets on the right show the effect of three dif-
ferent components of our importance measure from
Equation 3.
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Fig. 16. Convergence curves for Figure 15 with direct
illumination only. Showing Peak Signal Noise Ratio.
Our sampling improves the image by 5 dB with dis-
tance sampling and another 3 dB from orientation.

In the case of large light collections like shown in Figure 14, splitting and its adaptive nature

has proven very useful to avoid having to increase camera rays to compensate for the extra noise.

In fact, when combined with variance driven adaptive sampling, it allows renders to finish faster
than if splitting were disabled. Nearby lights are always sampled with probability 1.0 which greatly

reduces variance. Figure 18 shows how the number of shaded lights increases as the shading point

gets closer to an area very dense in lights. This is important because not all the points on the

scene need to trace the same amount of shadow rays. At the same time, over-splitting can be

counterproductive as well, as shown in Figure 13. A threshold of 1.0 would cause all lights to be

shaded, which will produce very low error, but at a high cost in number of rays. We can see this

effect in Figure 12 — the error decreases as we raise the split threshold until the point where we

start firing so many rays that the amount of error per traced ray causes the curves to go back up

again.

Intuition suggests that jumps in the number of shaded lights could lead to discontinuities, but in

practice the transitions produced by the variance based heuristic (Section 5.4) are smooth enough

to render these transitions invisible. In practice we are further assisted by adaptive pixel sampling

which equalizes the variance across the image. We only used fixed numbers of camera samples for

the results presented in this paper.

We highlight another seemingly simple example in Figure 17 where a million lights are added to

the ceiling of a Cornell Box. In this case, our algorithm is able to both render the far-field effect

of the many lights by choosing only a handful when shading the floor, as well as the near field

behavior very close to the light sources where it selects a few dozen of the nearest lights by tree

splitting.

Finally, we show a comparison of our system to the spatial light distribution implemented in

PBRT [Pharr et al. 2016] in Figure 19. The algorithm used by PBRT is based on a 64
3
grid where

each voxel builds a PDF over all the lights using the existing light sample methods to estimate

their potential contribution to random points in that voxel. Their method is quite elegant in that

it requires very little specific knowledge about the lights, but when the light collection becomes
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Our method Uniform sampling

Fig. 17. A cornell box lit by a million lights. This is a
case where lights are non-local. The under-exposed
detail on the right half shows the layout.

Fig. 18. In this heat-map, color indicates the light
count per shading point on the left scene: the red
areas in the ceiling represent around 28 lights; green
around 10; and dark blue 2-3 (0.85 split threshold).

PBRT

Our method

Fig. 19. A comparison between PBRT on the top row and our method below. Both render with one shadow ray
per shading point (which means splitting is disabled for ours) and 16 samples per pixel. The cropped regions
on the right illustrate the improved image quality from our technique. The render times are 90 minutes for
PBRT (due to its lengthy initialization) and 22 seconds for our renderer.

large, the initialization time is prohibitively long. In contrast, our tree construction is quite fast and

only depends on the number of emitters. Once PBRT populates its grid, it is able to render faster

since it just re-uses those precomputed PDFs. Nonetheless, at equal sample counts, even ignoring

the initialization time our algorithm clearly shows an improvement.

While we have described our system as using binary trees, our practical implementation takes

advantage of SIMD instructions and builds a four-wide tree. This change reduces the overall depth of

the tree, which improves stratification by reducing the amount of sample stretching in Algorithm 3.

It does mean that the splitting operation follows four subtrees instead of two, but this can be

compensated by adjusting the split threshold.

8 FUTUREWORK
The basic framework we have presented here presents numerous avenues for future work. In the

context of acceleration structures for ray tracing, several researchers have observed that bottom-up

construction can lead to higher quality trees [Gu et al. 2013; Walter et al. 2008]. The same algorithms

should transfer fairly naturally to our case as well. The cost function (Equation 2) has worked well,

but further exploring the relationship between this cost metric and the importance metric could

lead to even better performance.

In highly occluded environments, the visibility function can be a major source of noise which is

not addressed by our work. Approaches that try to incorporate visibility progressively [Donikian
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et al. 2006; Vévoda et al. 2018] could in theory be combined with our work and be included in the

cluster importance. The concurrent work by Vévoda et al. [2018] is particularly interesting though

we believe their requirement on spatially caching the visibility information presents a challenge

in scenes with large spatial extent or volume effects that fill the scene. Finding a spatial caching

structure that balances resolution against memory usage in an intuitive way is still a challenge.

The diffuse approximation we make in our cluster importance could be improved by trying to

estimate a cheap approximation of the actual BRDF. Recent representations suitable for real time

lighting [Dupuy et al. 2017; Heitz et al. 2016] could be beneficial to our work as well.

Perhaps more importantly, finding the optimal value for the split threshold is still a manual

process we would like to automate in a principled way. While in our implementation the default of

0.85 has proven to be a conservative starting point, optimally tuning this number can be difficult

for artists who usually do not have time to devote to experimenting with rendering parameters.

Even though we believe that splitting is a key benefit to our algorithm, finding a parameter-free

policy would be desirable.
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